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data, one of the standard regularization methods(see Poggio and Torre, 1984)
leads to cubic spline interpolation before differentiation. We show that
in the case of regularly-spaced data this solution corresponds to a convolution
filter-- to be applied to the signal before differentiation-- which is a
cubic spline. In the case of non-exact data, which is the most interesting
situation, we use another regularization method that leads to a different
variational principle. We prove(l) that this variational principle leads

• .to a convolutioal filter for the problem of one dimensional edge detection,
(2) that the form of this filter is very similar to the gaussian filter,
and (3) that the regularizing parameter A in the variational principle effectively
controls the scale of the filter.

Finally, we outline several issues arising from our solution to
the edge detection problem: (1) the use of methods from regularizing theories
for finding the optimal value of the regularizing parameter , ; (2) the connection
between these methods and the scale-space method for edge detection; (3)
the relationship between our edge detector and other detectors, especially

*the Marr/ Hildreth edge detector; (4) the extension of our one-dimensional
solutionto two-dimensional edge detection; and (5) the extension of our method
to deal with differentiation of surface data( though the physical constraint

. underlying the form of the regularizer is not valid in general for depth
data); this issue is connected to the problem of interpolating and approximating
depth data.
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A REGULARIZED SOLUTION TO EDGE DETECTION

T. Poggio, H. Voorhees and A. Yuille

Abstraict. We consider edge detection as the problem of measuring and localizing changes
of light intensity in the image.-(As discussed by Torre and Poggio (1984), edge detection,
when cefined in this way, is an ri-posed problem in the sense of Hadamard. - - "'---

Using standard regularization theory, we regularize the problem with a stabilizing
functio.ial that is a specific form of a Tikhonov stabilizer, following Reinsch (1967) and
Schoer berg (1964). The regularized solution that arises is then the solution to a variational
principle. In the case of exact data, one of the standard regularization methods (see Poggio
and Torre, 1984) leads to cubic spline interpolation before differentiation. We show that in
the case of regularly-spaced data this solution corresponds to a convolution filter--to be
applied to the signal before differentiation-which is a cubic spline. In the case of non-exact

Be data, which is the most interesting situation, we use another regularization method that leads
to a different variational principle. We prove (1) that this variational principle leads to a
convolution filter for ;he problem of one-dimensional edge detection, (2) that the form of
this filter is very similar to the gaussian filter, and (3) that the regularizing parameter X in
the variational principle effcctively controls the scale of the filter.

Finally, we outline several issues arising from our solution to the edge detection
problem: (1) the use of methods from regularizing theories for finding the optimal value
of the regularizing parameter X; (2) the connection between these methods and the scale-
space method for edge detection; (3) the relationship between our edge detector and
other detectors, especially the Marr/Hildreth edge detector; (4) the extension of our one-
dimensionaI solution to two-dimensional edge detection; and (5) the extension of our method
to deal with dilferentiation of surface data (though the physical constraint underly; ig the
form of the regularizer is not valid in general for depth data); this issue is connected to the
problem of interpolating and approximating depth data.
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1. Introduction

".' Edge detection does not have a precisely defined goal. The word edge"itself, whict refers

to physical properties of objects, is somewhat of a misnomer. Several years of experience
have shown that the ideal goal of detecting and Iocatinphysalgedg inthe surfaces
being imaged is very difficult and still out of reach *(for a review see Brady, 1982). Edge
detection has come to be defined as the first step in this goal of detecting physical changes
such as object boundaries-the operation of detecting and locating changes in intensity in
the image. Other processes which operate on these measurements of intensity changes will
then group boundaries and label and characterize them in terms of the properties of the
3-D surfaces.

Intended in this narrow sense, edge detection-this first step in processing the
image--is mainly the process that measures, detects and localizes changes of intensity.
Derivatives must be estimated correctly to label the critical points in the image intensity
array. characterize their local properties (are they minima or maxima or saddle points?)
and thLs relate them to the underlying physical process (are they shadow edges or depth
discont nuities?).rAs-a consequence, several different derivatives of the image, possibly at
different scales, may have to be eis-ifflated -- --

In this sense, Torre and Poggio (1984) considered edge detection as a problem of
numerical differentiation of images. The problem is not straightforward, and attempts over
many years have proven its difficulties. Considered as a problem of numerical differertiation,
edge datection turns out to be an ill-posed problem. As explained by Poggio and Torre
(1984), mathematically ill-posed problems are problems where the solution either does not
exist or is not unique or does not depend continuously on the data.

Numerical differentiation is a (mildly) ill-posed problem because its solution does not
depend continuously on the data. It is therefore natural to try to solve this problem by using

k.O regularization techniques developed in recent years for dealing with mathematically ill-posed
problems. The problem can be regularized by the use of a wide class of filters (Torre and
Poggio, 1984, section 2.4; see also Duda and Hart, 1973). In the following section we
consider two specific regularizing operators, that in some sense are very natural.

2. Regularizing Edge Detection

To regularize an ill-posed problem and make it well-posed, one has to introduce generic
constraints on the problem. In this way, one attempts to force the solution to lie in a subspace
of the solution space, where it is well defined. The basic idea of regularization techniques
is to restrict the space of acceptable solutions by choosing the function that minim zes an
appropriate functional. Poggio and Torre consider in particular standard regularization
theory based on quadratic variational principles. They list three main techniques for
regularizing the ill-posed problem of finding z from the data y such that Az = L. They
involve the choice of norms 11-11 (usually quadratic) and of a stabilizing functional IIPZII.
The choice is dictated by mathematical considerations, and, most importantly, by a physical
analysis of the generic constraints on the problem. Three main methods can then be applied
(see Bertero, 1982):

(1) Among z that satisfy IIPzIJ < C, where C is a constant, find z that minimize-i

IIAz-pI1, (-)

A very similar problem arises in the characterization of surface properties-in particular their
differential properties-from depth data.

".". "." "- -"-. .- - .- .. ' .- - . -". - .. --. .- ---. . -". .- -- " - .- - - - - - -. .. " . . ..-.-- . .- • -I



Poggo Voorhees, Yuille

Figure 1 Cubic Interpolating Spline Filter (L4 function of Schoenberg)

(2) Among z that satisfy JIAz - yll < C, find z that minimizes

IIPz1j, (2)
(3) Find z that minimizes

((Az - yJ(1 + XJIPzfJJ, (3)

where X is a regularization parameter.

The first method consists of finding the function z that satisfies the constraint IIPzlJ < C and
best approximates the data. The second method computes the function z that is sufficiently
close to the data (C depends on the estimated errors and is zero if the data are noiseless)
and is most "regular". In the third method, the regularization parameter X controls the
compromise between the degree of regularization of the solution and its closeness to the
data.

In the case of edge detection considered as numerical differentiation, we want an
approximation f to the intensity data y, at sample points x, that is well behaved under
differentiation. Thus we consider an operator A which samples the function f on the lattice
such that AfIf., = f1,, for i = 1,..., N.

The problem is then to find a suitable norm and a suitable stabilizing functional JIPfJJ.
It is natural to chose for P the simplest form of Tikhonov's stabilizing functionals (Tikhonov
and Arsenin, 1976) with P = and the usual L2 norm. For k = 2 this choice corresponds

to a constraint of smoothness on the approximated intensity profile z, with JPf'I--
Its physical justification is that the noiseless image has to be smooth in the sense that its
derivatives must be bounded because the image is band-limited by the optics. Band-limited
functions have bounded derivatives because f' < f1M, where M = sup F(w), f] is the
cut-off frequency, and F(w) is the Fourier transform of f(x). Physically, the constraint of
smoothness allows us to effectively eliminate the noise that creeps in, after, or during the
sampling and transduction process and makes the operation of differentiation unstable. We
stress that this is not the only stabilizing functional possible for this problem, although it is
probably the simplest one.

2.1. The second regularization method and interpolating cubic splines

With this choice of I', the second regularization method is: among f such that J'(z,)= Y
find f that minimize f ff" dx. A theorem by Schoenberg (see Greville, 1969) shows that
the solution to this problem is a cubic spline interpolating between the data points. The
following result is a reformulation of results due to Schoenberg (1946, 1964):

Theorem 1: The cubic spline function f interpolating evenly-spaced data points
and minimizing f " dx can be obtained by convolving the data points with a
cubic spline filter which corresponds to the L4 function of Schoenberg.
A plot of L4 is given in Figure 1. Note that the size of the filter is fixed with respect to

the sampling lattice. The filter is 0 at every pixel but the central one, where it is I. Thus L4

is an interpolating filter that does not perform any smoothing.

2



Poggio Voorhe .s, Yuille

Figure 2 Filter R derived by regularization principles.

2.2. T'ie third regularization method, approximating splines and the edge de ectlon
filter

The third regularization method leads to the following problem: Find the f that minihnizes

S(y, - (Xi))2 + X J(fI())2d (4)

where , is the regularization parameter which can be found as described later. This problem
was considered originally by Reinsch (1967) in the case of numerical differentiation and by
Schoenberg (1964) for the problem of graduation. Both Schoenberg and Reinsch gave
the solition in terms of approximating cubic splines. In addition, we prove that hr most
practical purposes, the approximating spline function can be obtained by convolving the
data point y, with the cubic spline convolution filter I shown in Figure 2 (see also AI)pendix
1). We then have the following theorem:

Theorem 2: The solution to equation (4)-the reoularized solution to the proble~m
of numerical differentiation-in the case of inexact data, can be obtained by
convolving the data with a convolution filter which is (a) a cubic spline, and 'b)
very similar to a gaussian.

Although this result is especially significant in the context of edge detection where
the search for an optimal filter and its justification has been a longstanding preoccupation,
it is somewhat surprising that this result does not seem to have been widely appreciated
in the numerical analysis literature. The exact assumptions under which Theorem 2 is
valid are discussed in Appendix 1. First, the data must be given on a regular grii (as is
the case for an image). Second, the image data must either go to zero at infinity or be
periodic. Under these conditions, the filtering operation is space-invariant and lin'ear (the
Euler-Lagrange equations corresponding to the quadratic variational problem are linear).
Thus the approximating spline can be obtained by a convolution operation. Note 'hat the
result that the regularizing operator corresponding to a quadratic variational principle is a
convolution filter-for data on a regular grid and toroidal boundary conditions-is lalid, in
genera., beyond the case of numerical differentiation.

Theorem 3: Quadratic, Tikhonov type regularization principles are equivalent to
convolving the data with a generalized spline filter, if the data are given on an
regular lattice and the boundary conditions are appropriate.

A generally interesting question is the physical correctness of the regularized solution.
In the ( ase considered in this paper the answer is simple and not very insightful: a necessary
and sufficient condition for the regularized solution to be correct is that the true iitensity
distribution is a polynomial of order less than 4 between sampling points. This proporty can
be derived directly from equation (3) of Appendix 1.2.

3. Regularization parameter and comparison with the gaussiar, filter

Figure 2 shows the filter It obtained by solving the variational principle equatio 1(1) in
Appendix 1.1. Its shape and size depends on the regularizing parameter X. Figure 3(a)

3
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Incm ,R .

(a) (b)

Figure 3 Filter R and first derivative for different values of regularizing parameter ,. (a)
), affects size of (the first derivative of) RI but (b) does not appear to affect shape of
R. (Amplitudes are normalized in (a); both amplitudes and widths are scaled linearly and
independently in (b) for comparison.)

-R filter
R filter / Gaussian

--- Gaussian

(a) (b)

A filter l

Gaussian '/,

(c)

Figure 4 Comparison of one-dimensional regularizing filter R with Gaussian: (a) zeroth,
(b) first, and (c) second derivatives.

shows the first derivative of the filter for different values of X. The continuous version of
the filter, derived in Appendix 2, is practically indistinguishable from the discrete filter, as
shown by numerical comparisons.

It is rather intuitive that the smoothing parameter X controls the effective size of the
filter. From our numerical work, it seems that X does not significantly affect the shape of
the filter, but only its size. as shown in Figure 3(b). Changing X amounts to scaling the size
of the filter up or down. If X is small, smoothness is unimportant, and the filter will tend to
be an interpolating filter and therefore be similar to a 6 function. On the other hand, with
a very large X, the main weight is on smoothness, and the filter will tend to be very large.
The continuous form of the filter suggests that the role of X is indeed equivalent to the role
of o for the gaussian (X n a4 , as shown in Appendix 4).

The regularization filter derived here appears to be quite similar to the Gaussian
distribution. Graphs of the filter It, its first and second derivatives are shown with those
of the Gaussian in Figure 4. Marr and Hildreth (1980; Hildreth, 1980) have argued that
the Gaussian is an optimal smoothing filter for detection due to its localization properties
in both the spatial and frequency domains. The fact that the Gaussian is quite similar to

4
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the optimal filter derived here using regularization principles provides further mathematical
justification for the use of a Gaussian-like filter in edge detection.

If the boundary conditions are not periodic or natural, then the derivalon of Reinsch
(see Appendix 1.1) provides the correct Green function for those boundary corditions.
In numerical experiments we have found that the Green function obtained in this way is
space-invariant for all points but those close to the boundaries.

4. Discussion
Severa' questions and extensions suggest themselves in a natural way. Here we list some

of them.

4.1. F nding the Optimal X

Regularization theory can give the optimal value of X if the errors on the smoothin criteria
and th. error of the approximations are known in advance. If the integral of f", is less
than L, and the sum of (Y; - .f(X)) 2 is less than c, then X = /E (see Bertero, 1981;
Tikhon)v, 1963; Tikhonov and Arsenin, 1977). Normally, however, errors on the data or
on the smoothness conditions are not known in advance. Regularization theory provides
several methods for finding the optimal smoothing parameter X under this circumstance.
We wait to indicate here two main methods: (1) Tikhonov's method, for convolut:on type
problerms, as is the case here, and (2) the cross-validation method and the generalized
cross-% alidation method (Wahba, 1980).

We plan to evaluate these methods for finding the optirml X for edge detection and
to test them on real images. An interesting issue that we are also planning to e>plore is
the following: The basic idea of the generalized cross-validation method is to check the

i. goodness of approximation for each value of N. In order to do that, one computes the
approximation by using not all but only some of the data points. Thus, the data ponts that
are not used for computing the approximations serve as the control points for the goodness
of the approximation. If one computes the goodness of the fit at different X, one can then
choose the optimal X. This idea has obvious connections with the use of fingerprints (Yuille
and Poggio, 1983) for finding the natural scale of the filter (Witkin, 1983); this point is
discussed next.

4.2. Optimal X and natural scale

The size of the filter with which to perform edge detection has always been an uniesolved
issue in computer vision. Our approach makes it clear that one expects, indeed, an optimal
size of the filter associated with the optimal value of the smoothing parameter X. In more
recent years, several scales of filtering have been used, partly as a way around this problem.
Rosenfeld and Kak (1982), Marr and Poggio (1977), Marr and Hildreth (1980; Hildreti, 1980)
have u:;ed several sizes of filters in order to perform edge detection.

M3re recently, Witkin (1983) has suggested the use of scale-space filtering, essentially
filtering across a continuum of scales, as the method by which to choose the optimal scale.
Witkin suggested some heuristics for picking the natural scale of filtering. We believe that
cross-validation-type methods may make more rigorous the idea of selecting an optimal
filterinc scale by selecting the optimal X value. We are planning to use fingerprits-the
zero-crossings across scales of the Laplacian of the convolved image-to find the optimal
X.

For scale-space filtering to be maximally effective, the shape of the filter should be
a gaussian (Yuille and Poggio, 1983a, 1983b; Witkin, 1983). The effect of changing X is
essentially equivalent to changing the size of the filter, and furthermore, the underly ng filter
is very similar to a gaussian. Therefore, increasing the value of X is equivalent to filtering

5
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el2G e 2R2 filter

DOG( 1.6) - - DOG (y 4.0)

(a) (b)

Figure 5 Difference of two-dimensional Gaussians as approximations to (a) Laplacian of

gaussian, (b) Laplacian of two-dimensional regularizing filter R2 . The ratio between the

scales (o) of the two Gaussians is -y.

the signal with a larger and larger gaussian as required in scale-space filtering. Because
of the many nice properties of gaussian convolution, this also suggests an efficient way of
obtaining approximations at increasing X.

4.3. Relation with other edge detectors

Because of the close similarity of our cubic spline filter to a gaussian, the edge detector
that we derive in this paper is very similar to edge detectors proposed previously. Marr
and Poggio (1977) proposed the difference of two gaussians as an approximation to the
second derivative of a gaussian. Marr and Hildreth (1980; Hildreth, 1980) have shown that
the second derivative of a gaussian is, indeed, very close to the difforence of gaussians.
J. Car ny's filter (Canny, 1983) is very close to the derivative of a gaussian, and Haralick's
cubic polynomial interpolant (Haralick, 1982) is again similar to Canny's filter.

Our derivation justifies the use of a gaussian or a filter very close to a gaussian as
the best filter for edge detection. Regularization theory yields derivative-of-gaussian filters
as the optimal filter in a simpler, more general, and, we believe, more rigorous way, than
previous derivations. In particular, our result makes clear that the quasi-gaussian filter
regularizes the ill-posed problem of numerical differentiation. The regularizing constraint
here is that the norm of the derivatives in the noise-free image is small.

It is interesting that we derive a filter very similar to Canny's, based on simpler and
more general principles that are not restricted to the optimal detection of step edges. It is
also interesting to note that the second derivative of the regularization filter, like the second
derivative of the Gaussian, can be approximated by a difference of Gaussians (although
not as well). While the second derivative of the Gaussian is best approximated by a space
constant ratio (the ratio of scales of the two Gaussians) -7 = 1.6 (Marr and Hildreth 1980;
Hildreth, 1980), increasing the ratio to - I results in a function which better fits the main
(excitatory) lobe of the regularizing filter, as shown in Figure 5.

4.4. Extension to two dimensions

Our approach can be extended to two dimensions in several ways. The most straightforward
method involves the use of directional derivatives. First order directional derivatives are
taken along several directions. Each one of them is one-dimensional and can be performed
according to our one-dimensional edge detector scheme. Depending on the specific goal,
one may then choose the direction that gives the maximum value of the derivative. This
corresponds to the non-maXimum supression scheme used by Canny (1083). It is also
equivalent to taking the second directional derivative along the gradient and looking for its
zeros (Torre and Poggio, 1984).

6
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-R 2 filter

--- Gaussian

(a) (b)

Figure 6 Cross section of (a) two-dimensional regularization filter /t2 and (b) its Laplacian.

A second method requires directly formulating the regularization principle in two
dimensions. Instead of equation (2), one would then have the problem of minimizing

Z'(yj_ f(rij))2 + X f(' f) 2 dx 4 (5)
i,.i

The main problem is the choice of the operator I'. If we consider a Tikhonov stabilizar (see
Poggio and Torre, 1984), then a choice for I' that is smooth enough to allow the use of
second derivatives of the regularized image is i' = VIV. This choice is used in Appendix
3 to derive the filter for the two-dimensional continuous case. The filter is shown in Figure
6. The choice of the derivative to be used on the filter is a separate, important issue that
we do not address in this paper. Torre and Poggio (1984) discuss the properties of several
two-dimensional differential operators, including the second directional derivative alcng the
gradient.

If /I is chosen to be the quadratic variation or the square Laplacian, the resulting
approximations, known as as thin plate splines (Wahba, 1980; Terzopoulos, 1984a), are
not smooth enough for finding zeros of second derivatives of a function2 , as implied by
Terzopoulos (1984b). It may also be interesting to explore the filters resulting :rom a
non-linear functional I'. In the case of a non-linear 1', one cannot use, in general, the
standard results about uniqueness and other properties of the solution that are available for
the quadratic case of Tikhonov's stabilizers, because the functional is no longer convex.

Clearly, formulations of this type are also relevant for the problem of surface int,3rpola-
tion and approximation in the sense of Grinson (1982) and Terzopoulos (1984a). In the
case of sparse data, which they considered, the variational principle does not lead to a
convolution filter, although it does lead to a standard Green function. On a regular grid it
leads to a convolution filter similar to the gaussian. As a practical implication, evenly-.paced
sui face data (for example, laser range data) may be interpolated or approximated effectively
by gauL.,1ian convolution. Hence, tasks which involve differentiating surface data, such
as computing lines of curvature (Brady, Ponce, Yuille and Asada, 1984), could use the
simpler convolution method to smooth the data. Since Reinsch's method (see Appendix 1.1)
can deil with boundary conditions different from periodic ones, the corresponding Green
function can be used to prevent smoothing across depth discontinuities.

TI e results of applying the Laplacian of the two-dimensional regularization filtar and
the larlacian of a gaussian to an image are shown in Figure 7. As expected, due to the
sinilarity of the two filters, both edge detection operators yield similar results.

2We are ind(tV.d to -erneri rcr/opoulos for this remark

7
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sap1

(a) (b) (c)

Figure 7 Comparison of Laplacian of two-dimensional regularization filter and Laplacian of
Gaussian as Edge Detectors: (a) image /, (b) zero-crossings of V2 1?2 */, (c) zero-crossings
of V 2(;.*l
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Appendix 1: The regularization filter for discrete data in one dimension

Below we present two methods for proving that the third regularization method described
in the text yields a convolution filter in the case of evenly-spaced discrete data n one
dimension with appropriate boundary conditions. Each derivation includes a method for
computing the filter, which has the form of a cubic spline.

1.1. The convolution version of Reinsch's optimal filter

Reinsch (1967) considered the general problem of interpolating and smoothing a secuence
of (not necessarily evenly-spaced) data points with uncertainties. Given a sequelce of
points (y,) with uncertainties "/. representing values of a function at points (x,), where

= 1,2 ... , n and < r. < .r,, the problem of finding a smooth function which sasses
near ezch point (.r,,y,) can be formulated as finding the function f(x) that minimizes the
functional (to be compared with equation 4 in the text)

f(o ) 2 i X j (f "()) 2d T. (1)

by,

Using calculus of variations, a cubic spline function is shown to be the optimal function
satisfying (1),

(X) = a, - b,(x - x,) - c,(x - x,)' + d,(x - X,)3 , X, < X < X,+,, (2)

for i = 1.2, ., n - 1, and formulas are presented for calculating from the data (X,) and (y,)
the coefficients (a,). (b,), (c,), and (di).

Wa specialize Reinsch's derivation as follows: First, the uncertainty associated with
each data point is assumed to be the same so that all by, - 1. Equation (1) above thus
reduces to equation (4) in the text. Second, the data are assumed to be uniformly spaced,
so that z, - 7, = h for i = 1,2,..., n - 1. Finally, unlike Reinsch's derivation, we assume
periodic boundary conditions, i.e., that the solution f is a periodic function over R, with
f(x) f(xz ±/kn) for integer k.

With these specializations we show that each set of coefficients can be calculated by
multipying the data points y by a constant coefficient matrix:

a_=Ay, b= By, g=Cy, 4= Dy,

where A, B, C, and D are circulant matrices representing the filter and its derivatives.
Hence, the data can be optimally smoothed (and differentiated) by a convolution operation.

Using calculus of variations, one obtains from (1) these conditions for the optimal
function f(x):

fX,+ - f(x,)_ = 0 (3a)

f'(xi)+ - f'(x)- = 0 (3b)

f"(,)+- f"(x,)- = 0 (3c)

f -.. -f"'(X,) = - (f(X,) - yi,), (3d)

(using 'y, = 1) and

(= , , <= ? < z,+I, (4)

for i 1,...,n (with x, z,, ), where
/(*)(Xj)+, r lin f(k)( ± )

9
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Equations (3-4) show that f(x) is a cubic spline, having the form of (2); hence,

f(=,+ = ai (5a)
f'(z,)+ = b (5b)
f"(z,)+ = 2c, (50

f.(xi)+ = 6d, (5d)

and, since all xj - zi-- h,

f(x,)_ = ai-. + bi- 1h + ci_ h2 + dihs (6a)
'(xi- = bi- I + 2c,._1h + 3dj_ I h2 (Sb)

f"(xi)- = 2cj 1 + S6d.h (Sc)
f/'(xi)- = 6d,. (6d)

Now substitution into (3) yields

a, - ai- - bi- 1 h - c_-1h2 - d,-lhl = 0 (7a)
b - bi-, - 2ci- 1h - 3dIh = 0 (7b)

2c, - 2ci-I - 6d,-.h = 0 (7c)

6d - 6di_, = - (I(,) - . (7d)
Equations (7) can be manipulated to yield

bih = (a,+j - a,) - cih 2 - dh 3  (8a)

ai+ - 2a + a,_I = I(c,_. + 4c, + c,+i)h2 (8b)
dih 3  j(ci+I - c,)h' (8c)

(c,_ 1 - 2c, + c,+,)h 2  2K(, -_a,)hl (8d)

Using the notation that:

I = the n X n identity matrix [ij,k] where

. 11, ifj = kj=1,...,n
1 "=0, otherwise

N = the n X n "next" matrix [n',h] where

1, ifj=k-lmodn,j ,...,n' '', =0, otherwise

P = the n x n "previous" matrix = NT

we define the matrices

T= jP+ I+jN
Q=P-21+N.

For example, if n = 4,

1= 0 p= 0 l N 0 0
1 0-0 0 1 0 0 I 01)000 (01 0 0\1 (0010 0

.- 00 l 0 0 0 0 1 0

(4/3 1/3 0 1/3 - 0 1
1/3 4/3 1/3 0) ( -2

T 01/3 4/ 1/30 1 -2 121/3 0 1/3 4/3) 1 0 1

10



Poggi. Voorhees, Yuile

Defining the vectors a (aj)T , b (bjh)T ,  
- (cih2 )T, d - (dhs)T and E = (y,)T, for

" i ,.. .,n, equations (8) can be expressed as

(N - I)g - C - d (9a)

Q4 = Tg (9b)
d= (N -J)c (9c)

Qc. 3 Y_ ) (9d)
These can be simplified to

a AV, dy, =Cy dDi, (10)

where

C = h!(Q 2 + kT)-'Q (1la)
-A=- 2QC (11b)
D = 1(N- I)C (IIC)
B = (N - I)A - C - D. ( Id)

Since I, N, and I' are circulant matrices, and since the set of circulant matrices is
closed under matrix addition, multiplication, and inversion, the resulting coefficient matrices
A, B, C, and D are also circulant, representing filters R(z), R'(x), R"(z), and R"'(x). The fact
that the filters are derivatives of each other follow from (5); hence, since differentiation is a
linear operator, the filter R", for example, can be used to both optimally smooth and twice
differentiate the data.

1.2 Another derivation of the regularization filter for discrete data In one dimension

In this derivation we show that the third regularization method, described by equation (4)
0-- of the text, yields a convolution filter which is a cubic spline. Standard results from the

calculus of variations guarantee that our solution has continuous second derivatives.
Again, the problem is to minimize

Sf(f"(T))'dX + Z(f'(zi) - y,)'. (1)

We find the minimum by sending f(z) F- f1(z) + 61(z) and setting the first variation of (1) to
zero,

X f f'"(z) 6f (z)dz + E(f(z) - yi) 6f(xi) = 0. (2)
i

This yields the Euler-Lagrange equation

Xf""(X) + f(z) 6(Z - z,) = 7 p,6(z - z,). (3)

So far, we have deliberately not specified boundary conditions. For infinite, or toroidal,
boundary conditions, the function f(z) can be determined in terms of the (yi) by a convolution
filter if and only if the data points (xi) are evenly spaced. This is because the system is
then translation-invariant2. We will show this explicitly and give a method for constructing
the convolution filter.

The function in (1) is convex, and hence has a unique minimum, so there is a unique
solution for f(z) in (3). Thus, we only need to see whether a convolution can solve (3). We

'Boundary conditions other than infinite or toroidal will destroy translation invariance.
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% try a solution

f (z) = R(x) (m) =f R(z - c)y(df) (4)

where "" denotes convolution, R(z) is a filter, and y(z) = , y,6(z- z,). We substitute (4)
into (3) and obtain

V~iR""( - z)+ ZyR(xi - x)6(x - x) - yu,6(z - zi)0
-I" i i I'

We compare coefficients of yi and obtain

XR"x- xi) + R(z, - xi)6(z - x,) - 6(x - zi) =0 (8)

If the (xi) are not evenly-spaced, then these equations are inconsistent, and no convolution
filter exists. if the (z;) are evenly spaced, then the set of equations in (6) reduces to a single
equation

XR"'(z) + E R(z,)6(z - x,) - 6(z) 0 (7)

The solutions to (7) correspond to cubic splines "stitched" together at the points {,}.
Let Ri(x) denote the solution in the range zi < x < xi+,. We write

R,(z) = ,x 3 + Pz 2y, + 6, (8)
The splines are stitched together so that R(x), RI'(x), and R"(x) are continuous at the points
{x,}. From (7), we see that I"' has a discontinuity of - R(zx) at xi. It is straightforward to
find the relations between the R,(x) and R,(x) in terms of the parameters ai,i, yj and 6,.
This gives

C ,+1 = a,, -R(nh)Ox
nh

#.+I = On- -R(nh)
(h)2 (9)

In+ I( 'In ....
bn+1 = bn + -)--Rnh)

where h is the spacing between the lattice points, h = xi+ - zi, and

R(nh) = a(nh)' + O.(nh)2 + -y.(nh) + 6n. (10)
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Appendix 2: The regularization filter for continuous data in one dimension

We want to find the function f(z) which minimizes the quadratic functional

J(=) -y())2dz + X "(1())2dz. ()

where ,(z) are the data, given on the continuum. We will show that f(z) can be expressed
as a convolution of the data z,(z) with a suitable filter R(z).

We obtain the Euler-Lagrange equations for (1) by setting the first variation to zero as
f (z) -f (x) + 6,t(z). This gives

J bf(z)(f(z) - u(z))dx + Xf 1(z)f1"(x)d = 0 (2)

for all variations 6f(x) and hence we have

" ...(=) + () = V(Z). (3)

The solution to the linear equation (3) is given by

f(z) = f r(z, x') y(z')dz (4)

where r(z, z') is the Green function of (3) obeying

x -r(z, X ') + ,(z, z') = 6(z - z'). (5)

Now (5) is a translation invariant equation and our boundary conditions are periodic or at
infinity, so r(z, z') is a function of (z - z') only. We write

r(X, Z') = r(Z - Z'). (6)

For each different value of X, we have a different equation (5) and hence a different
Green's function which we denote by R(z, X,). Note from (5) that

R(x,0) = 6(z). (7)

So in the limit as the confidence in the data is complete, the filter becomes the delta
function. (It is easy to see all this by taking the Fourier transform of equation 3.)

It is straightforward to find the Green's function of (5) which vanishes at plus and
minus infinity. This is given by

=~,X e- IzIvX/Vi '~ _ _ - (8)
/ Cos ,, 4 4

In Fourier space, the transform of R(z, )) can be obtained directly from (5):
17B TR(wX) 1-4 (1-- 1 ~~+ X,--z W

so we can write

R(z, \)= / C (10)

At X = 0 the Green function goes to a delta function, as we saw in (7).
Define ju by

4 = (11)

Then, for x > 0, we have

, I1A ,

R(z, )= .~I~ cos1-+ in (12)

13
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and

R'(z,) = i12 (13)J 2

Thus the extrema of R(z, i) occur at

z=- , n= 1,2... (14)
P

and at these extrema, R takes the value

R(Y nwP Is (15)

So if p is small (x large), the extrema are at large z and correspond to small values of R. If
. is large (X small), the nearest extrema occur at small x and correspond to large values of
R. The function changes sign many times.

14
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Appendix 3: The regularization filter for continuous data in two dimensions

We can extend the results of the previous section to two dimensions. Our generalization of

the smoothing function f(f"())'di is

Courant and Hilbert (1953) show that the Euler-Lagrange equation is

V2V2V2f = o. (2)
We write the regularization of the two-dimensional smoothing problem in the form

K / f((r) - ylz)) 2 d_ 4 X f fV(3))V fld,.
The Euler-Lagrange equations of the combined system are

)XV2V2V2I(1r) + (s) =(=). (4)

This equation is translation invariant and so, for boundary conditions at infinity or periodic,
the solution can be written as a convolution

f(T_) = 112(Z) * Y(Z_) (5)

where

XV2V2V2 R ?(=) + 112(l) = 6(7) (6)
where 6(2) is the Dirac delta function. Again, observe that for small X the filter R2(Z) tends
to the delta function.

To solve (6) we.take its Fourier Transform, and find

I R2 9) 6(7)

This gives a solution

- f e+i(8)R2,(:_) =2? xW-i-+ dw. (8)

We express ;E and w in polar coordinates

x = (r, , (,,w, 0). (9)
So

"0 "LJ 
CO0) - w dw dO. (10)

Now

J eir T o(e-)dO = rJ,(wr) (11)

where J, is the zero order Bessel function. This gives

,0 6+iwdw, (12)

that is, Rt2 is the Hankel transform of 1/(Xv,6 + 1). This integral can be solved numerically.

The square Laplacian stabilizer leads to a similar formula, I.e. to

-= 0w) ,wd,, (13)'-;~~ ~ 0t(_ XW, +I1

• -The corresponding filter is not smooth enough to allow second derivatives to be taken, but
is sufficient for first derivatives. The integral is found in standard texts (for example,

15
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Gradshteyn and Ryzhik, 1980), yielding

112(;[) iX /2)k 4 i(2_ (14)

where kci(s) is a Thompson function given by

k- 2 2k+l

kei(x) =(ln- - C)bci(z)- ber(x)4 - I)T- (ItS)
wherek=0l 2-ik+2[(2k +I)!

where,'+

0( )k.T4k2k=o 'k 2(2k + Ijh'(o

bcr(x) = Z0! ,k=, 2, [(2k)!121

and (7 = 0.5772... is Euler's constant. The asymptotic behavior is

kei(-) -. sill(-fiz) (17)

where a and fl are constants.

16
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Appendix 4: The regularization filter as an approximation to the Gaussian
In this appendix we show that the regularization filter approximates the gaussian, both in
one and two dimensions.

4.1 Comparison of one-dimensional filters

We show that the one-dimensional regularization filter is an approximate solution to the
diffusion equation and therefore approximates a gaussian.

The one-dimensional regularization filter in is given by

I1(X, /) 14C -IL/' %f.CS X -7 (I)

We expand this in a Taylor series in E.S to get

/ 2[) - (2)~ + O(P)3" (2)

This expansion is valid when i~x is small, i.e., when x is small compared to X1/4. In this case
the first two terms which we denote by i?(x, it) are a good approximation to the function.
We calculate

;)2t _ -g_ (3)
aX 2  2 vr

and

+ o(pX), (4)

40 which satisfy, to order (,,X) 2, the equation
a2 jt 3 a?= 2 , _ . (5)

Thus this function obeys the diffusion equation,

a2 1 aft (6)ail at

with parameter t -- 12A ., in the region where pz is small. As p decreases, this
region gets larger and the region in which the function approximates a Gaussian increases.

This theoretical analysis supports the numerical results (for discrete data) which show
that I? can be approximated by a Gaussian. Furthermore, recalling that the standard
deviation a of the Gaussian is given by a = V'/i, the analysis shows that the standard
deviation of the corresponding Gaussian is X1/4.

A comparison of it with the gaussian G - (e - '/2,') can also be done directly in the
Fourier domain, where 7It = 1/(l "+ Xw 4 ) and 7G = eU2 w , as shown in Figure 8.

4.2 Comparison of two-dimensional filters

We now consider the two-dimensional case. The regularized filter can be written in terms
of a Fourier integral

1.2(Z, X) = ± J . (7)
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Figure 8 Comparison of one-dimensional regularizing filter R with gaussian in Fourier

domain: (a) zeroth, (b) first, and (c) second derivatives.

We perform the transformation w -4 X1/6  to obtain, with = 67

2==,P = w ?- _.(8)

We expand the exponential in a power series
R'() 21 -t(1 + i. + (i. + 0(p' X))dW. (9)

Thus we have

R,( , 1! f -; (I + (i _. p.)2 + o(p3X)) . (0o)

Note that the linear term drops out due to asymmetry of the integrand. Keeping the first
two terms on the right hand side of (10), and denoting this approximation by k2(4,L, we
calculate

3I

"V2k 2 +dw

and

OR I J -- _d" (12),7_ 2 i

Thus as before, the approximation I?2(1, X) satisfies the diffusion equation with t proportional
to \1/

2 . The exact function of proportionality can be calculated from (12).

Again, a direct comparison of the Gaussian with our regularizing filter I2 is done easily
in the Fourier plane. Both filters are circularly symmetric and therefore depend only on .'-"

the radial frequency tv. A comparison in Fourier space of the two-dimensional gaussian
C, == e-"'O' and the regularizing filter 7/2 = 1/(X,"' 1I) is shown in Figure 9.

18
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- 2 ft~r - R2 fllte
.-- Gauan G-- ",auhsan"

W W

(a) (b)

Figure 9 Comparison of two-dimensional filter R2 with two-dimensional gaussian G2 in
Fourier plane (a) filters and (b) their Laplacians.
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